IITE-B.Tech. Semester-I/II Subject: Engineering Physics (PH0011) Unit -1 Assignment

Definitions:

Electric field intensity, Electric flux, Coulomb's law, Polarization, Dielectric constant, Electric Susceptibility, Electric dipole moment, Magnetization, Magnetic susceptibility, permeability, Magnetic flux, Magnetic flux density

Short/Long questions:

- 1. State and explain Coulomb's law with suitable formula.
- 2. State and explain Gauss's law.
- 3. What do you mean by dielectric material? How it behaves in the presence of electric field.
- 4. Derive the relation between polarisation, dielectric constant and electric susceptibility.
- 5. Derive the Clausius-Mossotti equation for the non polar dielectric material.
- 6. What is polarisation in dielectric? Discuss the different types of polarisation with necessary diagram.
- 7. Mention the major differences between diamagnetic, paramagnetic and ferromagnetic materials.
- 8. What is ferromagnetic domain? What is the effect of external magnetic field on domains.
- 9. What do you mean by hysteresis loss? Define and show the retentivity and coercivity on the hysteresis loop diagram.
- 10. Derive relation between B, H and M.

Numericals: (Also you can practice similar examples as per the given referencebook.)

- A magnetising field of 1000A/m produces a magnetic flux of 2x10⁻⁵ Weber in a bar of iron of 0.2cm² cross-section. Calculate permeability and susceptibility of the bar.
- Two parallel plates having equal and opposite charges are separated by a 2cm thick slab that has dielectric constant 3. If the electric field inside is 10⁶ V/m, calculate the polarization and displacement vector.
- 3. A dielectric constant of diamond is 1.43. Calculate permittivity and electric susceptibility of diamond.

- A solid dielectric is placed in an electric field of 750 Vm -1 and polarization is given by 3.8 x10⁻⁸C/m². Evaluate relative permittivity of material.
- 5. The dielectric permittivity of a solid material is 2.25×10^{-10} F/m. Find out dielectric constant and electric susceptibility of material.
- 6. Calculate flux density and magnetization of nickel if its magnetic field strength is 10^5 A/m and magnetic susceptibility is 0.654×10^{-5} .
- 7. Magnetic field intensity of a paramagnetic material is 10^4 A/m. At room temperature, itssusceptibility is 2.35 x 10^{-3} .Calculate magnetization of material.
- 8. The magnetic field intensity in a piece of ferrite is 10⁶ A/m. If susceptibility of the material at room temperature is 2.90 x 10⁻³. Calculate magnetization and flux density of material.
